quasihyperbolic metrization - traduction vers russe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

quasihyperbolic metrization - traduction vers russe

Nagata-Smirnov metrization theorem; Bing-Nagata-Smirnov metrization theorem

quasihyperbolic metrization      

математика

квазигиперболическая метризация

quasihyperbolic metric      

математика

квазигиперболическая метрика

metrizable         
TOPOLOGICAL SPACE THAT IS HOMEOMORPHIC TO A METRIC SPACE
Metrisable space; Metrisable; Metrizable; Metrization theorems; Metrizability; Metrisation theorem; Metrisability; Metrization problem; Metrisation problem; Urysohn's metrization theorem; Semi-metrisable; Semimetrizeable; Urysohn metrization theorem; Locally metrizable space; Metrizability theory; Locally metrizable; Semi-metrizable; Metrization theorem; Locally metrisable space; Locally metrisable; Non-metrizable space; Non-metrizable; Non-metrisable space; Non-metrisable; Metrizable topological space; Metrisable topological space

общая лексика

метризуемый

Wikipédia

Nagata–Smirnov metrization theorem

The Nagata–Smirnov metrization theorem in topology characterizes when a topological space is metrizable. The theorem states that a topological space X {\displaystyle X} is metrizable if and only if it is regular, Hausdorff and has a countably locally finite (that is, 𝜎-locally finite) basis.

A topological space X {\displaystyle X} is called a regular space if every non-empty closed subset C {\displaystyle C} of X {\displaystyle X} and a point p not contained in C {\displaystyle C} admit non-overlapping open neighborhoods. A collection in a space X {\displaystyle X} is countably locally finite (or 𝜎-locally finite) if it is the union of a countable family of locally finite collections of subsets of X . {\displaystyle X.}

Unlike Urysohn's metrization theorem, which provides only a sufficient condition for metrizability, this theorem provides both a necessary and sufficient condition for a topological space to be metrizable. The theorem is named after Junichi Nagata and Yuriĭ Mikhaĭlovich Smirnov, whose (independent) proofs were published in 1950 and 1951, respectively.

Traduction de &#39quasihyperbolic metrization&#39 en Russe